Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Transport Research. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Transport Research
  • Publications
  • Research software
  • Other research products
  • Conference object
  • CA
  • Hal-Diderot
  • Hyper Article en Ligne

Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rakha, Mohamed, Sami; Imam, Fahim, T.; Dean, Thomas, R.;

    Part 2: Real World; International audience; In this paper, we present a practical approach to generate the constraint engine for an effective constraint-based intrusion detection system (IDS). The IDS framework was designed for safety-sensitive networks that involve limited-access closed networks such as the networks for command and control systems or Air Traffic Control (ATC) systems. The constraint engine generated by the framework supports real-time performance while ensuring the intended, normal behaviour of its target networks. We present the IDS framework in terms of its internal DSL representation as well as its transformation mechanisms to generate the constraint engine code. Comparing the autogenerated version against a manually implemented, optimized version of the constraint engine indicates no significant difference in terms of their performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Hal-Diderot
    Conference object . 2018
    License: CC BY
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2019 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Hal-Diderot
      Conference object . 2018
      License: CC BY
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Allahdadian, Saeid; Döhler, Michael; Ventura, Carlos; Mevel, Laurent;

    International audience; In this paper the effects of measuring noise and number of samples is studied on the stochastic subspace damage detection (SSDD) technique. In this technique, i.e., SSDD, the need of evaluating the eigenstructure of the system is circumvented, making this approach capable of dealing with real-time measurements of structures. In previous studies, the effect of these practical parameters was examined on simulated measurements from a model of a real structure. In this study, these effects are formulated for the expected damage index evaluated from a Chi-square distributed value. Several theorems are proposed and proved. These theorems are used to develop a guideline to serve the user of the SSDD method to face these effects.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hal-Diderotarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hal-Diderot
    Part of book or chapter of book . Conference object . 2016
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hal-Diderotarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hal-Diderot
      Part of book or chapter of book . Conference object . 2016
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pollard, Evangeline; Gruyer, Dominique; Tarel, Jean Philippe; Ieng, Sio Song; +1 Authors

    Lane detections and tracking are crucial stages for a great number of Advance Driving Assistance Systems (ADAS), for instance for road lane following or robust ego localization. In these applications, the most important module is probably the lane marking primitives extraction algorithm. Since several decades, a lot of approaches have been proposed in order to achieve this task. Unfortunately, it is yet difficult to guarantee robust results from these extraction algorithms in case of bad weather conditions, degraded lane markings, or due to intrinsic limitations of cameras. In this paper we propose an approach in order to improve the quality of the lane marking extraction. By extraction, we mean the classification of the image pixels into two classes: marking and non-marking. The extraction is generally the first step of a marking detection system, so its efficiency has a strong impact on the performances of the whole system. The proposed algorithm is based on the combination of two different extraction algorithms. In order to validate the quality of this work, some tests and evaluations are provided and allow to prove the efficiency of such an approach. The evaluation is performed on camera images and then on synthetic images. The results with camera and synthetic images are compared and discussed.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marsac, Paul; Bocci, Edoardo; Cardone, Fabrizio; Cannone Falchetto, Augusto; +7 Authors

    ISBM 2020, RILEM International Symposium on Bituminous Materials , Lyon, FRANCE, 14-/12/2020 - 16/12/2020; The Task Group 2 of the RILEM Technical Committee 264-RAP on non-cold recycling identified the need to gather some insights about possible durability issues associated with the combination of Warm Mix Asphalt (WMA) and of Reclaimed Asphalt (RA) in order to prioritize the characteriza-tion or research needs for relevant damage types. For this purpose, an interna-tional inter-laboratory testing program was launched in 5 different laboratories. This was developed on the basis of the challenges which a road material de-signer commonly faces: reduce the temperature, add RA, but preserve the same properties. Each laboratory characterized, according to its internal protocol, two variations of the same type of mixture (similar grading curve, binder content, etc.): a Hot Mix Asphalt (HMA) without RA taken as reference and a WMA with 40% RA. The performances of all the WMA with 40% RA are then com-pared in order to see if common trends emerge from the different characteriza-tion methods and reveal property issues specific to WMA+RA combinations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Hal-Diderot
    Conference object . 2020
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Hal-Diderot
      Conference object . 2020
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: NAAIM, Alexandre; Moissenet, Florent; Dumas, Raphaël; Begon, Mickaël; +1 Authors

    40ème congrès de la Société de Biomécanique, PARIS, FRANCE, 28-/10/2015 - 30/10/2015; Soft tissue artefact (STA) is one of the most important limitations when studying human movement through marker-based motion capture techniques. Indeed, the relative movement between the reflective skin markers and the underlying bones introduce errors in bone kinematics. Upper limb kinematics is particularly affected by STA, especially when studying scapula. As a result, there is a need for correction in order to use, with confidence, this technique in clinical environments. Different compensation or correction methods exist, such as multibody optimisation (MBO). Using MBO, the studied limb is represented as a kinematic chain composed of rigid segments linked by mechanical joints. The position and orientation of each segment are then optimised under kinematic and rigid body constraints in order to minimise the sum of the squared distances between measured and model-determined markers positions. It has been shown that the correction obtained depends on the joint model and that anatomical- based models are better suited to reach physiological results. The aim of the study was thus to define and validate different upper limb joint models used in a MBO framework focusing on the definition of an anatomical-based scapulothoracic joint.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Woudsma, Clarence; Jakubicek, Paul; Dablanc, Laetitia;

    9th International Conference on City Logistics, Tenerife, ESPAGNE, 17-/06/2015 - 19/06/2015; This paper focuses on the spatial patterns of freight and logistics activities in North America. The recent interest in logistics and warehousing and its impact on the urban environment has prompted research investigating the 'sprawling' nature of these firms. Logistics sprawl, i.e. the spatial deconcentration of logistics facilities and distribution centers in metropolitan areas has been examined for several metropolitan areas (Dablanc and Ross 2012; Dablanc 2014; Dablanc et al., 2014), yielding contrasting results: Atlanta and Los Angeles have experienced strong logistics sprawl between 1998 and 2008 while Seattle has not. The objective in this paper is two-fold. An additional case study (Toronto) is investigated to expand the current understanding of North American logistics sprawl and methodological issues, particularly related to facility identification and location data are discussed. An updated method for analyzing spatial patterns of logistics activity in North American cities is subsequently proposed. This updated method may then be used in the future to re-examine former case studies (Los Angeles, Atlanta, Seattle) as well as to investigate new ones.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transportation Resea...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    53
    citations53
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bounini, Farid; Gingras, Denis; Pollart, Hervé; Gruyer, Dominique;

    IEEE Intelligent Vehicle symposium 2017, Redondo Beach, ETATS-UNIS, 11-/06/2017 - 14/06/2017; This paper presents a modified potential field method for robot navigation. The approach overcomes the wellknown artificial potential field (APF) method issue, which is due to local minima that induce the standard APF method to trap in. Thus, the standard APF method is no longer useful insuch case. The advantage of the new proposed method, as opposed to those that resort to the global optimization methods, is the low computing time that lines up with the standard A-Star(A*) method. The strategy consists of looking for a practical path in the potential field-according to the potential gradient descent algorithm (PGDA)-and adding a repulsive potential to the current state, in case of blocking configuration, a local minimum. When the PGDA reaches the global minimum, a new potential field will be constructed with only one minimum that matches the final destination of the robot, the global minimum. Finally, to determine the achievable trajectory, a second iteration is performed by the PGDA.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hal-Diderotarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1109/ivs.20...
    Conference object . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    63
    citations63
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hal-Diderotarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1109/ivs.20...
      Conference object . 2017 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Borghini G.; Bandini A.; Orlandi S.; Di Flumeri G.; +14 Authors

    International audience; Air Traffic Control (ATC) has been classified as the fourth most stressful job. In this regard, sixteen controllers were asked to perform ecological ATC simulation during which behavioral (Radio Communications with pilots - RCs), subjective (stress perception) and neurophysiological signals (brain activity and skin conductance - SC) were collected. All the considered parameters reported significant changes under high stress conditions. In particular, the theta, alpha, and beta brain rhythms increased significantly (all p<0.05) all over the brain areas, and both the SC components exhibited higher values (p<0.01). Additionally, the number of speech under high stress decreased significantly (p<10 -4 ) while both the mean and median value of the F0 component of the RC increased (p<0.01). The results can be employed to objectively measure and track the controller’s stress level while dealing with ATC activities to better tailoring the workshift and maintaining high safety levels.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Hal-Diderot
    Conference object . 2020
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Luttringer, Jean-Romain; Alfroy, Thomas; Merindol, Pascal; Bramas, Quentin; +2 Authors

    International audience; With the growth of demands for quasi-instantaneous communication services such as real-time video streaming, cloud gaming, and industry 4.0 applications, multi-constraint Traffic Engineering (TE) becomes increasingly important. While legacy TE management planes have proven laborious to deploy, Segment Routing (SR) drastically eases the deployment of TE paths and thus became the most appropriate technology for many operators. The flexibility of SR sparked demands in ways to compute more elaborate paths. In particular, there exists a clear need in computing and deploying Delay-Constrained Least-Cost paths (DCLC) for real-time applications requiring both low delay and high bandwidth routes. However, most current DCLC solutions are heuristics not specifically tailored for SR. In this work, we leverage both inherent limitations in the accuracy of delay measurements and an operational constraint added by SR. We include these characteristics in the design of BEST2COP, an exact but efficient ECMP-aware algorithm that natively solves DCLC in SR domains. Through an extensive performance evaluation, we first show that BEST2COP scales well even in large random networks. In real networks having up to thousands of destinations, our algorithm returns all DCLC solutions encoded as SR paths in way less than a second.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dépôt Institutionel ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://arxiv.org/pdf/2011.0519...
    Conference object
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/nca511...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    https://doi.org/10.48550/arxiv...
    Article . 2020
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gerhard Hiermann; Richard F. Hartl; Jakob Puchinger; Thibaut Vidal;

    International audience; We introduce an electric vehicle routing problem combining conventional, plug-in hybrid, and electric vehicles. Electric vehicles are constrained in their service range by their battery capacity, and may require time-consuming recharging operations at some specific locations. Plug-in hybrid vehicles have two engines, an internal combustion engine and an electric engine using a built-in rechargeable battery. These vehicles can avoid visits to recharging stations by switching to fossil fuel. However, this flexibility comes at the price of a generally higher consumption rate and utility cost. To solve this complex problem variant, we design a sophisticated metaheuristic which combines a genetic algorithm with local and large neighborhood search. All route evaluations, within the approach, are based on a layered optimization algorithm which combines labeling techniques and greedy evaluation policies to optimally insert recharging stations visits in a fixed trip and to select the fuel types. The metaheuristic is finally hybridized with an integer programming solver, over a set partitioning formulation, so as to recombine high-quality routes from the past search into better solutions. Extensive experimental analyses are conducted, highlighting the good performance of the algorithm and the contribution of each of its main components. Finally, we investigate the impact of fuel and energy cost on fleet composition decisions. Our experiments show that a careful use of a mixed fleet can significantly reduce operational costs in a large variety of price scenarios, in comparison with the use of a fleet composed of a single vehicle class.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PolyPublie
    Other literature type . 2019
    Data sources: PolyPublie
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Operational Research
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Conference object . 2018
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    124
    citations124
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Transport Research. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rakha, Mohamed, Sami; Imam, Fahim, T.; Dean, Thomas, R.;

    Part 2: Real World; International audience; In this paper, we present a practical approach to generate the constraint engine for an effective constraint-based intrusion detection system (IDS). The IDS framework was designed for safety-sensitive networks that involve limited-access closed networks such as the networks for command and control systems or Air Traffic Control (ATC) systems. The constraint engine generated by the framework supports real-time performance while ensuring the intended, normal behaviour of its target networks. We present the IDS framework in terms of its internal DSL representation as well as its transformation mechanisms to generate the constraint engine code. Comparing the autogenerated version against a manually implemented, optimized version of the constraint engine indicates no significant difference in terms of their performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Hal-Diderot
    Conference object . 2018
    License: CC BY
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2019 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Hal-Diderot
      Conference object . 2018
      License: CC BY
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Allahdadian, Saeid; Döhler, Michael; Ventura, Carlos; Mevel, Laurent;

    International audience; In this paper the effects of measuring noise and number of samples is studied on the stochastic subspace damage detection (SSDD) technique. In this technique, i.e., SSDD, the need of evaluating the eigenstructure of the system is circumvented, making this approach capable of dealing with real-time measurements of structures. In previous studies, the effect of these practical parameters was examined on simulated measurements from a model of a real structure. In this study, these effects are formulated for the expected damage index evaluated from a Chi-square distributed value. Several theorems are proposed and proved. These theorems are used to develop a guideline to serve the user of the SSDD method to face these effects.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hal-Diderotarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hal-Diderot
    Part of book or chapter of book . Conference object . 2016
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!